A Bayesian Decision Theoretical Approach to Supervised Learning, Selective Sampling, and Empirical Function Optimization

نویسندگان

  • James L. Carroll
  • Kevin Seppi
  • Eric K. Ringger
  • Dan Ventura
  • David W. Embley
  • Charles Knutson
چکیده

A Bayesian Decision Theoretical Approach to Supervised Learning, Selective Sampling, and Empirical Function Optimization James L. Carroll Department of Computer Science Doctor of Philosophy Many have used the principles of statistics and Bayesian decision theory to model specific learning problems. It is less common to see models of the processes of learning in general. One exception is the model of the supervised learning process known as the “Extended Bayesian Formalism” or EBF. This model is descriptive, in that it can describe and compare learning algorithms. Thus the EBF is capable of modeling both effective and ineffective learning algorithms. We extend the EBF to model un-supervised learning, semi-supervised learning, supervised learning, and empirical function optimization. We also generalize the utility model of the EBF to deal with non-deterministic outcomes, and with utility functions other than 0-1 loss. Finally, we modify the EBF to create a “prescriptive” learning model, meaning that, instead of describing existing algorithms, our model defines how learning should optimally take place. We call the resulting model the Unified Bayesian Decision Theoretical Model, or the UBDTM. WE show that this model can serve as a cohesive theory and framework in which a broad range of questions can be analyzed and studied. Such a broadly applicable unified theoretical framework is one of the major missing ingredients of machine learning theory. Using the UBDTM, we concentrate on supervised learning and empirical function optimization. We then use the UBDTM to reanalyze many important theoretical issues in Machine Learning, including No-Free-Lunch, utility implications, and active learning. We also point forward to future directions for using the UBDTM to model learnability, sample complexity, and ensembles. We also provide practical applications of the UBDTM by using the model to train a Bayesian variation to the CMAC supervised learner in closed form, to perform a practical empirical function optimization task, and as part of the guiding principles behind an ongoing project to create an electronic and print corpus of tagged ancient Syriac texts using active learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling

Recent advances in deep reinforcement learning have made significant strides in performance on applications such as Go and Atari games. However, developing practical methods to balance exploration and exploitation in complex domains remains largely unsolved. Thompson Sampling and its extension to reinforcement learning provide an elegant approach to exploration that only requires access to post...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

A New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction

In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...

متن کامل

Why is Posterior Sampling Better than Optimism for Reinforcement Learning?

Computational results demonstrate that posterior sampling for reinforcement learning (PSRL) dramatically outperforms existing algorithms driven by optimism, such as UCRL2. We provide insight into the extent of this performance boost and the phenomenon that drives it. We leverage this insight to establish an ̃ O(H p SAT ) Bayesian regret bound for PSRL in finite-horizon episodic Markov decision ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008